BIOSCAN Unlocks the World of Insect Diversity

Application

BIOSCAN’s standardized methods and comprehensive data collection enable environmental managers, policymakers, and scientists to better monitor ecosystem health and detect early warning signs of environmental change. The project’s findings help inform conservation strategies, environmental impact assessments, and land management decisions across various landscapes. This information is particularly valuable for tracking how species respond to climate change, urban development, and agricultural practices, allowing for more targeted and effective conservation efforts.

Challenge

Recent studies show alarming decreases in the mass and diversity of arthropods (insects, spiders, and related species), reflecting larger changes in global biodiversity. However, scientists lack comprehensive, long-term data to accurately assess the scale, causes, and consequences of these changes. While DNA sequencing offers a powerful tool to document global biodiversity and detect patterns of change, arthropods remain underrepresented in biodiversity assessments despite their dominance in land ecosystems and their critical role in ecosystem services that nature provides to humans. This underrepresentation occurs because traditional methods of identifying species by physical characteristics are particularly difficult with arthropods.

In Canada, the need for improved biodiversity monitoring is especially urgent as land-use changes, climate change, and other human-caused stressors reshape ecosystems. The impact of these stressors on Canadian arthropod biodiversity remains poorly documented, even though their decline could signal broader ecosystem disruptions affecting agriculture, forestry, and natural resource management. Combining DNA barcoding (using genetic markers to identify species) with high-speed sequencing provides an opportunity to document arthropod diversity rapidly and accurately across ecosystems, both globally and regionally. This research is essential for developing models that incorporate arthropods—one of the most significant yet overlooked components of global biodiversity—into assessments of ecosystem health and sustainability.

Did You Know?

High-throughput sequencing is a powerful technology that can rapidly analyze DNA from thousands of samples simultaneously, while DNA metabarcoding uses genetic “barcodes” to identify multiple species from mixed environmental samples. When combined in projects like BIOSCAN, these techniques allow scientists to discover and monitor biodiversity at a scale and speed previously impossible. BIOSCAN’s approach has expanded the DNA barcode reference library from 700,000 to 2.5 million species, providing a much more complete picture of global biodiversity.

Research

The Centre for Biodiversity Genomics, led by Dr. Paul Hebert, hosts BIOSCAN, an international research initiative that combines DNA barcoding technology with high-speed sequencing to establish a global biodiversity monitoring system. This Food from Thought project contributes to the International Barcode of Life Consortium’s program to document global arthropod biodiversity while tracking how arthropod communities respond to changing environments. BIOSCAN’s methodology uses metabarcoding (analyzing DNA from multiple species simultaneously) across 2,500 global sites, expanding the DNA barcode reference library from 0.7 to 2.5 million species while generating important information about some of Canada’s most distinctive and sensitive ecological regions.

The Canadian component includes two major research streams: BIOSCAN CANADA, which includes the TRACE program that systematically analyzes arthropod communities across three ecological regions (Mixed Wood Plain, Prairies, and Boreal Shield) using standardized insect traps, and BIOSCAN ARCTIC, which focuses on developing comprehensive DNA barcode references for arctic species. Using a standardized sampling approach, the project placed 45 specialized insect traps (Malaise traps) per ecological region across natural and human-modified landscapes, enabling measurement of biodiversity patterns and variations in response to agricultural, forestry, and urban development pressures.

Cimbicidae insect

Image of Cimbicidae documented by the Centre for Biodiversity Genomics.

Results

BIOSCAN’s ongoing comprehensive assessments reveal new understandings of biodiversity across Canadian ecosystems, including unexpectedly high species richness and complex ecological patterns. Through DNA metabarcoding and high-speed sequencing, the team documented biodiversity levels significantly higher than previous estimates for arthropod groups, including mites, spiders, butterflies, moths, and others. The project revealed surprising findings, including: arctic regions show unexpectedly high arthropod diversity with rapid community responses to warming trends; areas where forests meet agricultural land show stark differences in species composition; urban environments demonstrate remarkable community resilience in certain “refuge” habitats; and wetland systems display sophisticated seasonal changes in response to environmental stressors.

The research covers diverse landscapes from grasslands to mountains, with important discoveries in soil communities where new species interactions and habitat patterns have emerged. This method effectively tracks how species respond to environmental pressures like urbanization, flooding, and mining, while monitoring both land and water species. Though challenges remain in standardizing methods and completing reference databases, BIOSCAN provides essential baseline data for conservation and environmental assessment across Canada’s ecosystems.

Impact

BIOSCAN’s influence extends across scientific understanding, environmental policy, and practical conservation efforts. The project fills critical knowledge gaps in biodiversity science, particularly crucial given documented declines like the 75% reduction in European arthropod mass. Through DNA barcoding and high-speed sequencing, BIOSCAN transforms how we monitor and understand biodiversity, revealing previously unknown species relationships and ecological patterns across Canadian ecosystems. In vulnerable regions like the Arctic, where climate change effects are accelerated, and grasslands threatened by agricultural expansion, the research provides essential baseline data and tracks community responses to environmental change. BIOSCAN’s standardized methods can inform environmental impact assessments, offering precise, rapid biodiversity measurements that enable early detection of ecosystem changes.

Learn More

Arribas, P., Andújar, C., Bidartondo, M. I., Bohmann, K., Coissac, É., Creer, S., deWaard, J. R., Elbrecht, V., Ficetola, G. F., Goberna, M., Kennedy, S., Krehenwinkel, H., Leese, F., Novotny, V., Ronquist, F., Yu, D. W., Zinger, L., Creedy, T. J., Meramveliotakis, E., … Emerson, B. C. (2021). Connecting high-throughput biodiversity inventories: Opportunities for a site-based genomic framework for global integration and synthesis. In Molecular Ecology (Vol. 30, Issue 5, pp. 1120–1135). Blackwell Publishing Ltd. https://doi.org/10.1111/mec.15797

Arribas, P., Andújar, C., Bohmann, K., deWaard, J. R., Economo, E. P., Elbrecht, V., Geisen, S., Goberna, M., Krehenwinkel, H., Novotny, V., Zinger, L., Creedy, T. J., Meramveliotakis, E., Noguerales, V., Overcast, I., Morlon, H., Papadopoulou, A., Vogler, A. P., & Emerson, B. C. (2022). Toward global integration of biodiversity big data: a harmonized metabarcode data generation module for terrestrial arthropods. GigaScience, 11. https://doi.org/10.1093/gigascience/giac065

Beermann, A. J., Zizka, V. M. A., Elbrecht, V., Baranov, V., & Leese, F. (2018). DNA metabarcoding reveals the complex and hidden responses of chironomids to multiple stressors. Environmental Sciences Europe, 30(1). https://doi.org/10.1186/s12302-018-0157-x

Bennett, R., Blagoev, G., & Copley, C. (2019). Araneae of Canada. In ZooKeys (Vol. 2019, Issue 819, pp. 41–56). Pensoft Publishers. https://doi.org/10.3897/zookeys.819.26391

Bukowski, B., Ratnasingham, S., Hanisch, P. E., Hebert, P. D. N., Perez, K., deWaard, J., Tubaro, P. L., & Lijtmaer, D. A. (2022). DNA barcodes reveal striking arthropod diversity and unveil seasonal patterns of variation in the southern Atlantic Forest. PLoS ONE, 17(4 April). https://doi.org/10.1371/journal.pone.0267390

Bush, A., Compson, Z., Rideout, N. K., Levenstein, B., Kattilakoski, M., Hajibabaei, M., Monk, W. A., Wright, M. T. G., & Baird, D. J. (2023). Replicate DNA metabarcoding can discriminate seasonal and spatial abundance shifts in river macroinvertebrate assemblages. Molecular Ecology Resources, 23(6), 1275–1287. https://doi.org/10.1111/1755-0998.13794

Bush, A., Monk, W. A., Compson, Z. G., Peters, D. L., Porter, T. M., Shokralla, S., Wright, M. T. G., Hajibabaei, M., & Baird, D. J. (n.d.). DNA metabarcoding reveals metacommunity dynamics in a threatened boreal wetland wilderness. https://doi.org/10.1073/pnas.1918741117/-/DCSupplemental

Castle, D., Hebert, P. D. N., Clare, E. L., Hogg, I. D., & Tremblay, C. (2021). Capturing the value of biosurveillance “big data” through natural capital accounting. Big Earth Data, 5(3), 352–367. https://doi.org/10.1080/20964471.2021.1946290

Clare, E. L., Fazekas, A. J., Ivanova, N. v., Floyd, R. M., Hebert, P. D. N., Adams, A. M., Nagel, J., Girton, R., Newmaster, S. G., & Fenton, M. B. (2019). Approaches to integrating genetic data into ecological networks. Molecular Ecology, 28(2), 503–519. https://doi.org/10.1111/mec.14941

Cowden, P., Hanner, R., Collis, B., Kuzmina, M., Conway, A., Ivanova, N., & Stewart, K. (2022). Early successional changes in biological soil crust community assembly and nutrient capture in mining impacted landscapes. Soil Biology and Biochemistry, 175. https://doi.org/10.1016/j.soilbio.2022.108841

Crobe, V., Ferrari, A., Hanner, R., Leslie, R. W., Steinke, D., Tinti, F., & Cariani, A. (2021). Molecular taxonomy and diversification of atlantic skates (Chondrichthyes, rajiformes): Adding more pieces to the puzzle of their evolutionary history. Life, 11(7). https://doi.org/10.3390/life11070596

Delabye, S., Rougerie, R., Bayendi, S., Andeime-Eyene, M., Zakharov, E. v., DeWaard, J. R., Hebert, P. D. N., Kamgang, R., le Gall, P., Lopez-Vaamonde, C., Mavoungou, J. F., Moussavou, G., Moulin, N., Oslisly, R., Rahola, N., Sebag, D., Decaëns, T., & Lijtmaer, D. (2019). Characterization and comparison of poorly known moth communities through DNA barcoding in two Afrotropical environments in Gabon. Genome, 62(3), 96–107. https://doi.org/10.1139/gen-2018-0063

D’Ercole, J., Dincă, V., Opler, P. A., Kondla, N., Schmidt, C., Phillips, J. D., Robbins, R., Burns, J. M., Miller, S. E., Grishin, N., Zakharov, E. v., DeWaard, J. R., Ratnasingham, S., & Hebert, P. D. N. (2021). A DNA barcode library for the butterflies of North America. PeerJ, 9. https://doi.org/10.7717/peerj.11157

DeWaard, J. R., Levesque-Beaudin, V., DeWaard, S. L., Ivanova, N. v., McKeown, J. T. A., Miskie, R., Naik, S., Perez, K. H. J., Ratnasingham, S., Sobel, C. N., Sones, J. E., Steinke, C., Telfer, A. C., Young, A. D., Young, M. R., Zakharov, E. v., & Hebert, P. D. N. (2019). Expedited assessment of terrestrial arthropod diversity by coupling Malaise traps with DNA barcoding. Genome, 62(3), 85–95. https://doi.org/10.1139/gen-2018-0093

Elbrecht, V., Braukmann, T. W. A., Ivanova, N. v., Prosser, S. W. J., Hajibabaei, M., Wright, M., Zakharov, E. v., Hebert, P. D. N., & Steinke, D. (2019). Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ, 2019(10). https://doi.org/10.7717/peerj.7745

Elbrecht, V., Lindner, A., Manerus, L., & Steinke, D. (2021). A bright idea-metabarcoding arthropods from light fixtures. PeerJ, 9. https://doi.org/10.7717/peerj.11841

Farrell, M. J., Govender, D., Hajibabaei, M., van der Bank, M., & Davies, T. J. (2022). Environmental DNA as a management tool for tracking artificial waterhole use in savanna ecosystems. Biological Conservation, 274. https://doi.org/10.1016/j.biocon.2022.109712

Hardulak, L. A., Morinière, J., Hausmann, A., Hendrich, L., Schmidt, S., Doczkal, D., Müller, J., Hebert, P. D. N., & Haszprunar, G. (2020). DNA metabarcoding for biodiversity monitoring in a national park: Screening for invasive and pest species. Molecular Ecology Resources, 20(6), 1542–1557. https://doi.org/10.1111/1755-0998.13212

Hebert, P. D. N., Braukmann, T. W. A., Prosser, S. W. J., Ratnasingham, S., deWaard, J. R., Ivanova, N. v., Janzen, D. H., Hallwachs, W., Naik, S., Sones, J. E., & Zakharov, E. v. (2018). A Sequel to Sanger: Amplicon sequencing that scales. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-4611-3

Hobern, D., & Hebert, P. (2019). BIOSCAN – Revealing Eukaryote Diversity, Dynamics, and Interactions. Biodiversity Information Science and Standards, 3. https://doi.org/10.3897/biss.3.37333

Hu, J., Pentinsaari, M., & Hebert, P. D. N. (2022). Measuring mass: variation among 3,161 species of Canadian Coleoptera and the prospects of a mass registry for all insects. PeerJ, 10. https://doi.org/10.7717/peerj.12799

Huemer, P., Hebert, P. D. N., Mutanen, M., Wieser, C., Wiesmair, B., Hausmann, A., Yakovlev, R., Möst, M., Gottsberger, B., Strutzenberger, P., & Fiedler, K. (2018). Large geographic distance versus small DNA barcode divergence: Insights from a comparison of European to South Siberian Lepidoptera. PLoS ONE, 13(11). https://doi.org/10.1371/journal.pone.0206668

Levesque-Beaudin, V., Sinclair, B. J., Marshall, S. A., & Lauff, R. F. (2020). Diptera communities of raptor (Aves) nests in Nova Scotia, Canada. Canadian Entomologist, 152(3), 342–354. https://doi.org/10.4039/tce.2020.26

McGee, K. M., Eaton, W. D., Porter, T. M., & Hajibabaei, M. (2020). Differences in the soil microbiomes of Pentaclethra macroloba across tree size and in contrasting land use histories. Plant and Soil, 452(1–2), 329–345. https://doi.org/10.1007/s11104-020-04553-w

McGee, K. M., Robinson, C. v., & Hajibabaei, M. (2019). Gaps in DNA-Based Biomonitoring Across the Globe. Frontiers in Ecology and Evolution, 7. https://doi.org/10.3389/fevo.2019.00337

Otis, G. W., Landry, J.-F., Dewaard, J. R., Gartshore, M., Beadle, D., & Stead, K. (2020). Rediscovery of Anacampsis lupinella in Ontario. In JESO (Vol. 5). https://www.

Pentinsaari, M., Anderson, R., Borowiec, L., Bouchard, P., Brunke, A., Douglas, H., Smith, A. B. T., & Hebert, P. D. N. (2019). DNA barcodes reveal 63 overlooked species of canadian beetles (Insecta, coleoptera). ZooKeys, 2019(894), 53–150. https://doi.org/10.3897/zookeys.894.37862

Pentinsaari, M., Blagoev, G. A., Hogg, I. D., Levesque-Beaudin, V., Perez, K., Sobel, C. N., Vandenbrink, B., & Borisenko, A. (2020). A DNA barcoding survey of an arctic arthropod community: Implications for future monitoring. Insects, 11(1). https://doi.org/10.3390/insects11010046

Quicke, D. L. J., Hebert, P. D. N., & Butcher, B. A. (2018). DNA barcoding reveals the Palaearctic species Histeromerus mystacinus (Hymenoptera: Braconidae: Rhyssalinae) in eastern North America. Canadian Entomologist, 150(4), 495–498. https://doi.org/10.4039/tce.2018.19

Rideout, N. K., Compson, Z. G., Monk, W. A., Bruce, M. R., Hajibabaei, M., Porter, T. M., Wright, M. T. G., & Baird, D. J. (2022). Environmental filtering of macroinvertebrate traits influences ecosystem functioning in a large river floodplain. Functional Ecology, 36(11), 2791–2805. https://doi.org/10.1111/1365-2435.14168

Robinson, C. v., Porter, T. M., McGee, K. M., McCusker, M., Wright, M. T. G., & Hajibabaei, M. (2022). Multi-marker DNA metabarcoding detects suites of environmental gradients from an urban harbour. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-13262-6

Rudar, J., Porter, T. M., Wright, M., Golding, G. B., & Hajibabaei, M. (2022). LANDMark: an ensemble approach to the supervised selection of biomarkers in high-throughput sequencing data. BMC Bioinformatics, 23(1). https://doi.org/10.1186/s12859-022-04631-z

Staley, Z. R., Chuong, J. D., Hill, S. J., Grabuski, J., Shokralla, S., Hajibabaei, M., & Edge, T. A. (2018). Fecal source tracking and eDNA profiling in an urban creek following an extreme rain event. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-32680-z

Steinke, D., Braukmann, T. W. A., Manerus, L., Woodhouse, A., & Elbrecht, V. (2021). Effects of Malaise trap spacing on species richness and composition of terrestrial arthropod bulk samples. Metabarcoding and Metagenomics, 5, 43–50. https://doi.org/10.3897/MBMG.5.59201

Thalinger, B., Deiner, K., Harper, L. R., Rees, H. C., Blackman, R. C., Sint, D., Traugott, M., Goldberg, C. S., & Bruce, K. (2021). A validation scale to determine the readiness of environmental DNA assays for routine species monitoring. Environmental DNA, 3(4), 823–836. https://doi.org/10.1002/edn3.189

Young, M. R., Proctor, H. C., deWaard, J. R., & Hebert, P. D. N. (2019). DNA barcodes expose unexpected diversity in Canadian mites. Molecular Ecology, 28(24), 5347–5359. https://doi.org/10.1111/mec.15292